Extensions 1→N→G→Q→1 with N=S3×C32 and Q=D4

Direct product G=N×Q with N=S3×C32 and Q=D4
dρLabelID
S3×D4×C3272S3xD4xC3^2432,704

Semidirect products G=N:Q with N=S3×C32 and Q=D4
extensionφ:Q→Out NdρLabelID
(S3×C32)⋊D4 = S3×S3≀C2φ: D4/C1D4 ⊆ Out S3×C32128+(S3xC3^2):D4432,741
(S3×C32)⋊2D4 = S3×D6⋊S3φ: D4/C2C22 ⊆ Out S3×C32488-(S3xC3^2):2D4432,597
(S3×C32)⋊3D4 = S3×C3⋊D12φ: D4/C2C22 ⊆ Out S3×C32248+(S3xC3^2):3D4432,598
(S3×C32)⋊4D4 = C3×S3×D12φ: D4/C4C2 ⊆ Out S3×C32484(S3xC3^2):4D4432,649
(S3×C32)⋊5D4 = S3×C12⋊S3φ: D4/C4C2 ⊆ Out S3×C3272(S3xC3^2):5D4432,671
(S3×C32)⋊6D4 = C3×S3×C3⋊D4φ: D4/C22C2 ⊆ Out S3×C32244(S3xC3^2):6D4432,658
(S3×C32)⋊7D4 = S3×C327D4φ: D4/C22C2 ⊆ Out S3×C3272(S3xC3^2):7D4432,684


׿
×
𝔽